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In the framework of the grand-canonical ensemble of statistical mechanics, we
give an exact diagrammatic representation of the density profiles in a classical
multicomponent plasma near a dielectric wall. By a reorganization of Mayer
diagrams for the fugacity expansions of the densities, we exhibit how the long-
range of both the self-energy and pair interaction are exponentially screened
at large distances from the wall. However, the self-energy due to Coulomb
interaction with images still diverges in the vicinity of the dielectric wall and the
variation of the density is drastically different at short or large distances from
the wall. This variation is involved in the inhomogeneous Debye–Hückel equa-
tion obeyed by the screened pair potential. Then the main difficulty lies in the
determination of the latter potential at every distance. We solve this problem by
devising a systematic expansion with respect to the ratio of the fundamental
length scales involved in the two coulombic effects at stake. (The application of
this method to a plasma confined between two ideally conducting plates and to
a quantum plasma will be presented elsewhere). As a result we derive the exact
analytical perturbative expressions for the density profiles up to first order in
the coupling between charges. The mean-field approach displayed in Paper I is
then justified.

KEY WORDS: Coulomb interactions; dielectric wall; grand-canonical ensemble;
systematic resummations; inhomogeneous Debye–Hückel equation; screened
potential with two characteristic length scales.



1. INTRODUCTION

The present paper is devoted to the systematic derivation of the density
profiles which are discussed in Paper I. The system is a classical multi-
component plasma, made of at least two species of moving charges with
opposite signs, near a plane wall macroscopically characterized by a
dielectric constant. The exact analytic expressions are obtained in the limit
of weak Coulomb coupling inside the fluid.

Our calculations performed in the framework of statistical mechanics
cast a new light on the fundamental phenomenon in such systems:
Coulomb screening of surface polarization charges inside the fluid. Indeed,
from electrostatics it is well known that the bulk thermodynamic properties
in a fluid of charges are independent from the charge state of boundary
walls. Nevertheless the microscopic long-ranged Coulomb pair interaction
v(r; rŒ) between two unit charges located respectively at r and rŒ takes into
account the electrostatic response of the wall: v(r; rŒ) is a solution of
Poisson equation

DrŒv(r; rŒ)=−4pd(r− rŒ) (1.1)

and its expression is ruled by the electrostatic boundary conditions. For
instance, when the material of the wall is characterized by a relative dielec-
tric constant Ew (with respect to the dielectric constant in the vacuum), the
solution of (1.1) reads

vw(r; rŒ)=
1

|r− rŒ|
−Del

1
|r− rŒg|

(1.2)

where Del — (Ew−1)/(Ew+1) and rŒg is the image of rŒ with respect to the
plane interface. (7) On the contrary, far away from any boundary or when
the wall has no electrostatic response (Ew=1) the potential takes its ‘‘bulk’’
value,

vB(r; rŒ)=
1

|r− rŒ|
(1.3)

Short-distance cut-offs must be introduced in order to prevent the collapse
between charges with opposite signs or between every charge and its image
when Ew > 1.

At the inverse temperature b=1/kBT, where kB is Boltzmann constant,
the four length scales in the problem are: the closest approach distance be2

determined by Coulomb interaction between charges of typical magnitude
e and with a mean kinetic energy of order 1/b; the mean interparticle
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distance a; the range b of the hard-core repulsion from the wall (which is
chosen to be the same for all species); the hard-core diameter s of charges
which prevents the electrostatic collapse inside the fluid. However the
cut-off s proves not to arise in the densities and correlations at leading
order in a low-density regime (because the long range of Coulomb interac-
tions is then the most important effect).

In the grand canonical ensemble (Section 2) the macroscopic param-
eters are the volume of the system, the fugacities za’s, where a is a species
index running from 1 to the number of species ns, and the inverse tempera-
ture b. The task of getting exact analytic results for a multicomponent
plasma where a cut-off is added, and where the screening of the long-range
part of the interaction is systematically dealt with, was achieved for the
density expansion of bulk correlations by Meeron. (11) Haga extended
Meeron’s scheme to the low-density expansion of the pressure (5) in the bulk
where densities are uniform.2

2 Apart from a minor error in the calculation of the coefficient called S2, his result is correct.

In Section 3 we devise a new reorganization of Mayer fugacity-expan-
sions for every particle density ra(x; {zc}, b) and its uniform bulk limit
rB
a ({zc}, b) in order to exactly deal with the long range of the self-energy of

a charge interacting with its image inside the wall as well as with the long
range of Coulomb pair interactions. (x is the distance from the plane wall
located at x=0. The notations {zc} means that the fugacities of all species
are involved.) Our reorganization of diagrams is performed in two steps. In
the first step we exhibit how the screening of the bare one-body interaction
with the dielectric wall may be described by resummations of ‘‘ring’’ sub-
diagrams. In the second step, we use an already known method in order to
exactly handle with the screening of Coulomb pair interactions. (2) (We
notice that, if we had used a one-step resummation analogous to that per-
formed in refs. 1 or 2, there would have been resummed diagramms with
some bare self-energies left—and therefore some spurious 1/x tails left—
which would disappear only by an adequate gathering with other diagrams
to be specified in every particular case.)

The latter exact systematic resummations produce auxiliary screened
potentials f1 and f2 each of which obeys a second-order differential equa-
tion studied in Section 4. The technical difficulty lies in the resolution of
these auxiliary inhomogeneous Debye–Hückel equations.

In order to get explicit analytic expressions, we consider a regime of
weak coupling inside the fluid

C —
be2

a
° 1. (1.4)
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However, the electrostatic coupling with the dielectric wall is not neces-
sarily weak even in the very vicinity of the wall,

be2

b
’ 1 (1.5)

After resummation of coulombic long-range divergencies, collective
screening effects operate on a scale equal to the bulk Debye length, o−1

D ,
with

oD —=4pb C
a

e2a r
B
a 3
C

1
2

a
(1.6)

The weak-coupling condition (1.4) is equivalent to the condition

a2 ° o−2
D (1.7)

At the same time, the density profile proves to be an expansion in integer
powers—possibly multiplied by some powers of logarithms—not of the
coupling parameter be2/a=C but of

eD — 1
2 be

2oD 3 C3/2 ° 1 (1.8)

Thus an eD-expansion provides an expansion in powers of the square root
of the density. (The cut-off s for pair interactions corresponds to an
integrable interaction; so it arises in the corrections to bulk quantities
only from the relative order proportional to the density, namely from the
order e2D .)

We show that the screened potentials f1 and f2 can be expanded in
powers of the ratio l̃ of the two length scales be2 and o−1

D which controls
the variations of the x-dependent inverse Debye length in the equation
obeyed by each fi. The expansion of each fi(r, rŒ) is uniform with respect
to the distances x and xŒ from the wall—when the projection of r− rŒ onto
the wall is kept fixed—in the sense that the term of order l̃n is bounded
for all x > b and xŒ > b by a constant which depends on oDb and
l̃/[oDb]=be2/b. In fact l̃ coincides with eD in the present problem and a
scaling analysis of Mayer diagrams allows one to obtain the small-eD
expansion of the density profile (see Section 5). Only one diagram contri-
butes up to first order in eD and ra(x; {zc}, b) can be explicitly rewritten as
ra(x; {r

B
c }, b). The latter general scheme, which provides systematic

expansions in l̃ and eD, can be also applied to a classical plasma near a
charged dielectric or an ideally conducting wall or to a low-degenerated
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quantum plasma in the vicinity of a boundary with any electrostatic
response. The corresponding works will be displayed elsewhere.

Eventually, at first order in the coupling parameter eD,

ra(x)=r
B
a h(x−b) exp 5Delbe

2
a

e−2oDx

4x
6×[1+R(oDx; eD, oDb)] (1.9)

where R is of order eD ln eD and eD. R(oDx) decays exponentially fast at
large distances over the scale o−1

D and tends to a finite value when x comes
to zero. Subsequently, ra(x) varies drastically over the bare-coupling scale
be2 very close to the wall, whereas its variation at distances larger than o−1

D

is scaled by the screening length o−1
D . In other words, very near the wall,

ra(x) is governed by the part of the self-energy of each particle originating
from the electrostatic response of the dielectric wall, whereas the mean
Coulomb interaction with other charges of the fluid modified by the impe-
netrable wall dominates the approach to the bulk value far away from the
wall. After calculation of the electrostatic potential drop F(x) at leading
order eD from the charge density profiles given by (1.9), the density profiles
prove to coincide with the expressions derived from the mean-field
approach introduced in Paper I,

ra(x)=r
B
a h(x−b) e

−be2aV
sc
self (x)[1−beaF(x)] (1.10)

where V sc
self (x) is the screened self-energy at order eD arising from the first

step in the resummations of Mayer diagrams.

2. MODEL

2.1. Potential Energy

The total potential energy is the sum of the electrostatic energy Uelect

and the short-range repulsive interaction USR. Uelect is equal to the sum of
Coulomb pair interactions plus the sum of self-energies in the presence of
the wall,

Uelect=
1
2 C
i ] j
eaieajvw(ri; rj)+C

i
e2aiVself(xi) (2.1)

In (2.1) eai is the charge of particle i and

Vself(xi)=−Del
1
4xi

(2.2)
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where Del is defined in (1.2). (9) The repulsion energy USR is also the sum of
hard-core pair interactions plus the sum of one-body potentials created by
the wall,

USR=
1
2 C
i ] j
vSR(ri− rj)+C

i
VSR(xi) (2.3)

with

exp[−bvSR(ri; rj)]=3
0 if |ri− rj | < s
1 if |ri− rj | > s

(2.4)

and

exp[−bVSR(x)]=3
0 if x < b
1 if x > b

(2.5)

We notice that in the case Ew < 1, exp(−be
2
aVself(x)) vanishes when x goes

to zero and VSR can be omitted, i.e., b can be set to zero, without any
collapse of the system onto the wall.

2.2. Fugacity Expansions

The grand partition function of the system in the semi-infinite space
x > 0 reads

X(b, {zc})= C
+.

N=0

1
N!

F 5D
N

i=1
dPi zai 6 e−b(Uelect+USR) (2.6)

In (2.6) the integration measure is denoted by > dPi — >xi > 0 dri ;ns
ai=1 and

Pi is the notation for (ri, ai). zai has the dimension of an inverse cubed
distance. The one-body interactions can be absorbed in an x-dependent
fugacity

z̄ai (xi) — zaie
−b[VSR(xi)+e2ai

Vself (xi)] (2.7)

According to (2.2) and (2.5)

z̄ai (xi)=zaih(xi−b) e
Delbe

2
ai
/(4xi) (2.8)
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where h is the Heaviside function. X can be written as

X(b, {zc})= C
+.

N=0

1
N!

F 5D
N

i=1
dPi z̄ai (xi)6 e−

b

2 ; i ] j [vSR(ri − rj)+eai eaj vw(ri ; rj)] (2.9)

The particle density for species a is derived from the grand partition func-
tion through a functional derivative

ra(x; b, {zc})=z̄a(x)
d ln X(b, {zgc })
dzga (x)

:
zga (x)=z̄a(x)

(2.10)

By definition of the bulk

lim
xQ+.

ra(x; b, {zc})=r
B
a (b, {zc}) (2.11)

According to the survey of the existence of thermodynamic limit for
Coulomb fluids, (10) the bulk densities satisfy the local neutrality

C
a

ear
B
a (b, {zc})=0 (2.12)

whatever the values of the zc’s are. In the following we will consider a weak
coupling regime where the system behaves as an ideal gas at zeroth order
in C. Besides, the particle density of species a in an ideal gas is just pro-
portional to the fugacity za. As a consequence, we can take advantage of
the freedom of choice for the zc’s exhibited in ref. 10 and enforce the extra
condition

C
c

eczc=0 (2.13)

(2.13) ensures that the ideal gas also satisfies (2.12) and this provides a
convenient simplification in the relation between the rc’s and the zc’s. We
stress that the irrelevance of the value taken by one among the fugacities,
which is always valid for bulk quantities, also holds for surface statistical
properties but only when the wall gets no global influence charge in the
presence of the Coulomb fluid. This is indeed the case when Ew is finite. On
the contrary, when Ew is sent to infinity, the wall material is an ideal
conductor which gains a global charge by influence. The latter is exactly
compensated by the net surface charge in the fluid and it depends on all
fugacities zc’s.
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2.3. Representation of the Density Profile in Terms of

Mayer Diagrams

The fugacity-expansion (2.9) may be expressed in terms of Mayer
diagrams where a point is associated with every Pi and two points are
joined by at most one bond

f(Pi, Pj)=e−b(vSR(ri − rj)+eai eaj vw(ri; rj))−1 (2.14)

The relation (2.10) and topological arguments (6) lead to various diagram-
matic representations for the fugacity expansion of ra(x). In the following
we will use

ra(x)=z̄a(x) exp 5C
G

1
SG

F D
N

n=1
[dPn z̄an (xn)] 5D f6

G

6 (2.15)

In (2.15) the sum runs over all the unlabeled and topologically different
connected diagrams G with one root point P — (a, r) (which is not
integrated over) and N internal points (N=1,...,.). Moreover the G’s
satisfy the extra constraint that the root point P is not an articulation
point. (P is an articulation point of G if G is split into at least two pieces
when the point P is removed.) [< f]G is the product of the f bonds in the
diagram G and SG is the symmetry factor of G, namely the number of
permutations between some internal points Pn that do not change the
product [< f]G.

At large distances vw(ri; rj) behaves essentially as 1/|ri− rj | and the f
bonds (2.14) are not integrable. The divergences in Mayer diagrams G may
be removed by splitting the f bonds into several auxiliary bonds fg and
by performing a reorganization of the diagrams Gg made with fg bonds.
(Gg diagrams have the same topological properties as G diagrams.) The
decomposition of f chosen for our purpose is

f=fcc+1
2 [f

cc]2+fT (2.16)

with

fcc (Pi, Pj) — −beaieajvw(ri; rj) (2.17)

With these definitions fT is at the border of integrability. The systematic
partial resummations of diagrams Gg are described in next section.
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3. EXACT TOPOLOGICAL RESUMMATIONS VALID

FOR ANY DENSITY

3.1. Step 1: Screening of the Self-Energy Induced by the Wall

The long-range one-body interaction e2aVself(x) involved in the fugacity
z̄a(x) turns into a short-range effective interaction when Coulomb ‘‘ring’’
subdiagrams are resummed. We introduce the following definitions.
A Coulomb ‘‘ring’’ subdiagram carried by a point P is either a bond
[fcc]2/2 or a chain of bonds fcc whose both ends coincide with P and
which contains at least two intermediate points. The value Ir of the sum of
all rings attached to a point P is equal to

Ir(x)=− 1
2 be

2
a[(f1−vw)(r; r)] (3.1)

where −be2a f1(r; rŒ) is the sum of chains made of an arbitrary number of
bonds fcc between r and rŒ and with intermediate points Pi weighted by
z̄(Pi). (1/2 is the symmetry factor of a single ring diagram.) By definition

−beaeaŒ f1(r; rŒ)=fcc (P; PŒ)+ C
+.

N=1
F 5D

N

i=1
dPi z̄(Pi)6

×fcc (P; P1) fcc (P1; P2) · · ·fcc (PN; PŒ) (3.2)

According to (2.17), the definition (3.2) of f1 is equivalent to the integral
relation

f1(r; rŒ)=vw(r; rŒ)−b C
a

e2a F drœ z̄a(xœ) vw(r; rœ) f1(rœ; rŒ) (3.3)

The sum of an arbitrary number of rings carried by a point P is equal to
exp Ir(r). (An analogous calculation appears in Section V.B of ref. 1.)

Let us consider all diagrams Gg (with weight z̄) that only differ from a
given diagram Gg[0] by one or more Coulomb ring subdiagrams carried by
at least one point of Gg[0] (see Fig. 1). Before integration over the internal
points of Gg[0], the integral corresponding to such a diagram is equal to the
integrand associated with Gg[0] times the contributions from Coulomb
rings. As a consequence, if we sum all such diagrams Gg we get one
diagram Gg[1] which has the same points and bonds as Gg[0] except that the
weights z̄ are replaced by weights

z̄[1] (P)=z̄(P) exp[− 1
2 be

2
a(f1−vw)(r; r)] (3.4)

Density Profiles in a Coulomb Fluid Near a Dielectric Wall. II 253



Fig. 1. Step-1 for resummations. Gg
Aa and Gg

Ab are two diagrams that only differ from Gg[0]
A

by ring subdiagrams. Labels are attached to points which are common to all diagrams. Each
point Pi carries a weight z̄(Pi). A bond fcc is drawn as a solid line, a bond (1/2)[fcc]2 as a
double solid line and a bond fT as a dashed line. The subdiagram S(P1) made of points P2,
P3, P4 exists in Gg[0]

A of Fig. 1 because at least one of the latter points carries a ring in
diagrams Gg

Aa and G
g
Ab.

where f1(r; rŒ) is defined in (3.2). At the end of the first partial resumma-
tion, the diagrams Gg with bonds fcc, 1/2[fcc]2 and fT and with weights
z̄a(x) have been replaced by diagrams Gg[1] with the same kind of bonds
but with weights z̄[1]a (x) and an extra construction rule R (see Fig. 2). The
latter one is necessary to avoid double counting. If some subdiagram S(Pm)
of Gg[1] is a ring of bonds fcc with weights z̄[1]a carried by the point Pm

(with weight z̄[1]am (xm)), then after integration over intermediate points in the
ring, the contribution from S(Pm), which depends only on xm, is factorized
in the total contribution from Gg[1] and is multiplied by the weight z̄[1]am (xm)
of its root point Pm; rule R states that the contribution from S(Pm) is equal
to its value where all its intermediate points have a weight z̄[1]a minus the
corresponding value where all its intermediate points would have a weight
z̄a. Indeed the latter value is already taken into account in the weight

Fig. 2. Example for rule R after step-1 resummations. After ring summations, Gg
Aa and Gg

Ab

contribute to Gg[1]
A , whereas the subdiagram S(P1) in G

g[0]
A disappears and Gg[0]

A contributes to
another Gg[1]. As a result the value of Gg[1]

A is equal to an integral where all bonds are the
same as in Gg[0]

A but where all weights z̄ have been replaced by z̄[1] minus the value of the
integral corresponding to Gg[0]

A where the weights z̄ have been replaced by z̄[1] only for points
which are not the intermediate points of a ring subdiagram.

254 Aqua and Cornu



z̄[1]am (xm) of the point Pm, whereas a subdiagram of Gg made of bonds fcc

but where at least one intermediate point carries another Coulomb ring
does not disappear in the ring resummation process leading to Gg[1]. (See
Figs. 1 and 2).

According to the definition (2.7) of z̄(P) and since Vself(x)=(1/2)(vw
−vB)(r; r), (3.4) may be written as

z̄[1]a (x)=h(x−b) za exp[−
1
2 be

2
a(f1−vB)(r; r)] (3.5)

As shown below in a weak-coupling expansion, we expect that for any finite
coupling constant (f1−vB)(r; r) has no algebraic tail at large distances. Thus,
contrary to z̄a(x) the screened fugacity z̄[1]a (x) does not contain the long-
range part of the self-energy induced by the electrostatic response of the wall
when Ew ] 1. In other words, the resummation of rings subdiagrams has
captured the main effect of Coulomb screening upon the electrostatic
interaction with the wall.

3.2. Step 2: Screening of Pair Interactions

In the second step we sum all chains of bonds fcc in diagrams Gg[1].
The systematic resummation process is performed as follows. We define a
‘‘Coulomb’’ point as the intermediate point of a chain of two bonds fcc

and which is not linked to any other point in the diagram. Such a point has
a weight z̄[1]a . A so-called ‘‘prototype’’ diagram P is a diagram Gg[1] which
contains no Coulomb point. We sum all diagrams Gg[1] which can be built
from the same diagram P by addition of at least one Coulomb point (with
weight z̄[1]) with the associated fcc bonds either to replace a fcc bond in P
by a chain of fcc bonds or to multiply a bond in P (see Fig. 3). In the latter
case, we use the convention according to which the diagram P is the same
whether the diagrams Gg[1] contain a bond (1/2)[fcc]2 (Pi, Pj) or a bond
fT(Pi, Pj) which are possibly multiplied by a chain of fcc bonds between Pi

and Pj. Since the P diagram may contain articulation points, the resum-
mation produces two effects.

First, we sum all diagrams Gg[1] that differ from P by a ring of bonds
fcc with at least one intermediate point with weight z̄[1]. As in the reorga-
nization of diagrams performed in step 1, this process leads to a renor-
malization of the fugacity by an exponential factor analogous to (3.4) with
an extra subtraction arising from the construction rule R for Gg[1]

diagrams. The resummed fugacity reads

z̄[2]a (x)=z̄[1]a (x) exp{−
1
2 be

2
a[(f2−vw)(r; r)−(f1−vw)(r; r)]} (3.6)
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Fig. 3. Step-2 for resummations. Gg[1]
B and Gg[1]

C are two Gg[1] diagrams which correspond
to the same prototype diagram P as the diagram Gg[1]

A in Fig. 2. The brackets with an index T
indicate that the diagrams Gg[1] must be calculated with the weights and the subtraction
(rule R) displayed in Fig. 2.

where f2 is defined by the integral equation (3.3) with z̄a(x) replaced by
z̄[1]a (x). According to (3.4) and (2.8), the expression of z̄[2]a (x) is similar to
(3.5)

z̄[2]a (x)=h(x−b) za exp[−
1
2 be

2
a(f2−vB)(r; r)] (3.7)

The second effect of step-2 resummations is a renormalization of the
fg bonds in the final diagrams P. The summation operates for each pair of
points in P independently. (See, for instance, ref. 1 for similar topological
considerations.) The sum of all possible single chains made of fcc bonds
and whose intermediate points carry weights z̄[1] is

Fcc (P; PŒ)=−beaeaŒf2(r; rŒ) (3.8)

The sum of the bond (1/2)[fcc]2 (P; PŒ) and of all subdiagrams made of
the product of a Coulomb chain (possibly made of only one bond
fcc (P; PŒ)) and a Coulomb chain with at least one intermediate point
linking P to PŒ is merely

1
2 [F

cc]2 (P; PŒ) (3.9)

The sum of the bond fT(P; PŒ), its product by at least one Coulomb chain
with at least one intermediate point, and the product of at least three
Coulomb chains, one of which at least contains one intermediate point
leads to the simple resummed bond (see refs. 2 and 11)

FRT — e−bvSR+Fcc
−1−Fcc− 1

2 [F
cc]2 (3.10)
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Fig. 4. Diagram P corresponding to Gg[1]
A , Gg[1]

B and Gg[1]
C after step-2 resummation. The

crenelated line is a bond FRT, while the double wavyline corresponds to a bond (1/2)[Fcc]2.
The rule R2 is illustrated in the present example.

After resummations the diagrams P are made of bonds Fcc, (1/2)
[Fcc]2, and FRT with at most one bond between two points (see Fig. 4) and
the following rules. A point—different from the root point—which carries
only two bonds Fcc has a weight z̄[2]a −z̄

[1]
a (R1) (see Fig. 5). A point—dif-

ferent from the root point—which is linked only to a (1/2)[Fcc]2 bond has
also a weight z̄[2]a −z̄

[1]
a (R2) (see Fig. 4). The rules R1 and R2 arise from

the definition of the Coulomb points which disappear in the resummation
process and from rule R of the first step of the resummations. All other
points have a weight z̄[2]a . For instance, the diagrammatic representation of
ra(r) in terms of P diagrams starts as

ra(r)=z̄[2]a (x) exp 3C
c

F drŒ z̄[2]c (xŒ)[Fcc+FRT](P; PŒ)

+C
c

F drŒ [z̄[2]c (xŒ)− z̄[1]c (xŒ)] 1
2 [F

cc(P; PŒ)]2+·· · 4 (3.11)

The diagrams represented by the dots contain more than one internal point.

4. SCREENED POTENTIALS

4.1. Partial Derivative Equations

The screened potential f2, as well as the other auxiliary object f1, are
defined through integral equations (3.3). Since vw is a solution of Poisson
equation (1.1), (3.3) is equivalent to a set of local equations. For xŒ > 0, the
latter ones read

3Drf1(r; rŒ)−o1
2(x) f1(r; rŒ)=−4pd(r− rŒ) if x > 0

Drf1(r; rŒ)=0 if x < 0
(4.1)
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Fig. 5. Example for rule R1. Diagram Gg contributes to the value of diagram Gg[1] after
step-1 resummations. The value of Gg[1] is determined by rule R. After step-2 resummations
Gg[1] contributes to diagram P, whose value is given by rule R1. A single wavy line denotes a
bond Fcc.

with

o1
2(x) — 4pb C

a

e2a z̄a(x) (4.2)

According to its definition (3.2), f1 is real. Since the operator [Dr−o1 2(x)]
is self-adjoint, the real function f1(r; rŒ) is symmetric under exchange of its
arguments when r and rŒ are in the same region,

f1(r; rŒ)=f1(rŒ; r) (4.3)

Moreover, the invariance of the system under translations in directions
parallel to the plane interface implies that

f1(r; rŒ)=f1(x, xŒ, y−yŒ) (4.4)

where y is the projection of r onto the plane perpendicular to the x-axis.
According to its definition (3.2), f1 obeys the same boundary conditions as
the electrostatic potential vw: f1 is continuous in all space,

lim
xQ 0 −

Ew
“f1

“x
(x, xŒ, y−yŒ)= lim

xQ 0+

“f1

“x
(x, xŒ, y−yŒ) (4.5)
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Since o1 2(x) contains a Heaviside distribution at x=b but no Dirac dis-
tribution, the derivative of f1(x, xŒ; y−yŒ) is continuous at x=b. Moreover
f1(x, xŒ; y−yŒ) tends to zero when x goes to +. or −.. All previous
properties are also true for f2(r; rŒ) with the only difference

o2
2(x) — 4pb C

a

e2a z̄
[1]
a (x) (4.6)

4.2. Scaling Property

A Fourier transform allows one to change the system of partial deri-
vative equations (4.1) for each fj(r; rŒ) (with j=1, 2) into a system of one-
dimensional differential equations with respect to x. For xŒ > 0,

5 “2
“x̃2−(1+q2)−Uj(x̃)6 f̃j(x̃, x̃Œ, q)=−4pd(x̃− x̃Œ) if b < x (4.7a)

5 “2
“x̃2−q

26 f̃j(x̃, x̃Œ, q)=−4pd(x̃− x̃Œ) if 0 < x < b (4.7b)

5 “2
“x̃2−q

26 f̃j(x̃, x̃Œ, q)=0 if x < 0 (4.7c)

In (4.7) we have introduced the dimensionless variable x̃=ojx with

o1 —
=4pb C

a

e2a za (4.8)

o2 —
=4pb C

a

e2a zae
ea (4.9)

ea —
1
2 be

2
a o1 (4.10)

and the dimensionless Fourier transform

f̃j(x̃, x̃Œ, q)=ojfj(x, xŒ, ojq) (4.11)

with fj(x, xŒ, ojq) — > dy exp[iojq.y] fj(x, xŒ, y). According to (2.8) and
(4.2), for x̃=o1x

U1(x̃)=
4pb
o2

1

C
a

e2a za(e
Del ea/(2x̃)−1) (4.12)
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while, according to (3.5) and (4.6), for x̃=o2x

U2(x̃)=
4pb
o2

2

C
a

e2a za[e
−(1/2) be2a(f1 −vB)(r; r)−e ea] (4.13)

When x goes to ., f1 tends to the bulk value f1B which is the solution of

[Dr−o
2
1] f1B(r, rŒ)=−4pd(r− rŒ) (4.14)

for all r’s. As rederived below,

f1B(r, rŒ)=o1f̃B(o1 |r− rŒ|) (4.15)

with

f̃B(r̃, r̃Œ)=
e−|r̃− r̃Œ|

|r̃− r̃Œ|
(4.16)

As a consequence,

(f1B−vB)(r; r)=−o1 (4.17)

and the definitions (4.12) and (4.13) ensure that

lim
x̃Q+.

Uj(x̃)=0 (4.18)

The boundary conditions for f̃j(x̃, x̃Œ, q) along the x-axis are the same as
for fj(x, xŒ, y−yŒ) (see (4.5)). Moreover, since o2 — o2(o1, e) a mere scaling
analysis of (4.7) shows that

fj(r, rŒ; oj, be2, b, Del)=ojf̃j(ojr, ojrŒ; e, ojb, Del) (4.19)

where e2 (e — (1/2) o1be2) is the generic notation for the e2a ’s (ea’s).

4.3. General Solutions

In the following only the value of fj(x, xŒ; y−yŒ) for xŒ > b will be
involved and (4.7b) becomes an homogeneous equation as well as (4.7c).
The simple general solutions of the latter equations that satisfy boundary
conditions take the form

f̃j(x̃, x̃Œ, q; b̃)=3
Bj(x̃Œ; q; b̃)(1−Del) eqx̃ if x < 0
Bj(x̃Œ; q; b̃)[eqx̃+Dele−qx̃] if 0 < x < b

(4.20)
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where q — |q|. The general solution of (4.7a) is the sum of a particular
solution f̃g

j (x̃, x̃Œ, q) and the general solution hj of the corresponding
homogeneous equation

d2hj

dx̃2 (x̃; q)+[Eq−Uj(x̃)] hj(x̃; q)=0 (4.21)

with Eq — −(1+q2). We look for a solution h+j (h−
j ) which vanishes (blows

up) at large positive x,

lim
xQ+.

h+j (x̃; q)=0 (4.22)

while limxQ+. h
−
j (x̃; q)=+..

Since the Uj(x̃)’s vanish when x̃ goes to +., then, for any given posi-
tive number g > 0 there exists some xq, g such that for all x > xq, g:
Eq−Uj(x̃) [ −|Eq |+g. As a consequence (see ref. 12) there exists one par-
ticular solution h+g

j (x̃; q) (with a particular multiplicative constant) which
tends to zero when x goes to+. at least as fast as exp[−x̃`|Eq |−g],

-x̃ \ x̃q, g |h+g
j (x̃; q)| [ exp[− x̃`|Eq |−g] (4.23)

whereas all other solutions grow to infinity at least as fast as exp[x̃`|Eq |−g].
Let call h−g

j (x̃; q) such a particular solution which diverges when x̃ goes to
+.. Henceforth (see, for instance, ref. 14) a particular solution of (4.7a)
for x > 0 is just

f̃g
j (x̃, x̃Œ, q) — −

4p
Wj, q

h−g
j (inf(x̃, x̃Œ); q) h

+g
j (sup(x̃, x̃Œ); q) (4.24)

where the Wronskien Wj, q — h
−g
j (x̃)(dh

+g
j (x̃)/dx̃)−h

+g
j (x̃)(dh

−g
j (x̃)/dx̃) is

independent from x̃ because d2/dx̃2+[Eq−Uj(x̃)] is a self-adjoint operator.
Finally, a generic solution of (4.7a) which vanishes when x goes to+.

takes the form

f̃j(x̃, x̃Œ, q; b̃j)=f̃
g
j (x̃, x̃Œ, q)+A(x̃Œ; q, b̃j) h

+g
j (x̃; q) for b < x (4.25)

with b̃j — ojb. Moreover the symmetry property (4.3) implies that the solu-
tion of (4.7a) with adequate boundary conditions at+. may be written as

f̃j(x̃, x̃Œ, q; b̃j)=f̃
g
j (x̃, x̃Œ, q)+Z(q, b̃j) h

+g
j (x̃; q) h

+g
j (x̃Œ; q) (4.26)
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for b < x and b < xŒ. The coefficient Z(q, b̃j) is determined by the conti-
nuity relations at x̃=b̃j and x̃=0 with the solutions (4.20) for 0 < x < b
and x < 0.

4.4. Exact Solutions for f 1 in Two Special Cases

An exact analytic expression—derived from the general method in
Section 4.3—exists for the screened potential f1 in two cases. The first one
corresponds to Del=0 so that the wall has no electrostatic response for any
strength e of the Coulomb coupling inside the fluid. The second situation is
the strict limit e=0 for Del ] 0. Indeed, in both situations U1=0 and when
xŒ > b f̃1 is the solution f2 (0) (x̃, x̃Œ, q; b̃, Del) of

5 “2
“x̃2−(1+q2)6 f2 (0) (x̃, x̃Œ, q; b̃, Del)=−4pd(x̃− x̃Œ) if b < x (4.27a)

5 “2
“x̃2−q

26 f2 (0) (x̃, x̃Œ, q; b̃, Del)=0 if x < b (4.27b)

In the following we use the notation b̃ for o1b and introduce b̃j only
when we consider both o1b and o2b.

When Del=0, for any coupling constant e

f21(x̃, x̃Œ, q; e, b̃, Del=0)=f2 (0) (x̃, x̃Œ, q; b̃, Del=0) (4.28)

and f̃1 has no special property at x=0. (According to (4.5), f̃1 and “f̃1/“x̃
are continuous at the crossing of the wall.) In fact, up to a translation of its
argument x equal to b, f̃1 is defined as the mean-field potential f in the
linearized Poisson–Boltzmann approximation in the case of a multicom-
ponent plasma in the vicinity of a plain hard wall (Del=0) located at x=0.
Such a wall exerts only a geometric constraint without any electrostatic
attraction: there is no need for introducing the hard-core repulsion VSR

(2.5) involved in our generic model, so that b could be set to zero in this
particular case. (We recall that at leading order in e, the correlation (or
Ursell) function of charges with a hard-core diameter s is just equal to
−beaeaŒf(x, xŒ; y−yŒ; Del=0) (4) and does not involve s.) As recalled in
(4.26) f1 may be written as the sum

f2 (0) (x, xŒ, o1q; b̃, Del=0)

=f2B(o1 |x−xŒ|, q)+h̃
+
HW(x̃+x̃Œ−2b̃; o1q) (4.29)
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(see refs. 8 and 13) where f2B is a particular solution of (4.27) which is
chosen to be its bulk value,

f2B(|x̃− x̃Œ|, q)=
2p

`1+q2
e−|x̃− x̃Œ|`1+q2 (4.30)

and h̃+HW is a solution of the associated homogeneous equation which
vanishes when x goes to +. and whose coefficient is entirely determined
by the boundary conditions at the interface,

h̃+HW(x̃+x̃Œ−2b̃; q)=
2p

`1+q2
`1+q2−|q|

`1+q2+|q|
e−(x̃+x̃Œ−2b̃)`1+q2 (4.31)

However f2(Del=0) cannot be calculated explicitly, because U2(x̃) ] 0
according to (4.13) and (4.29).

When Del ] 0, the electrostatic response of the wall disappears in the
limit e=0 for b̃ fixed,

lim
eQ 0
f21(x̃, x̃Œ, q; e, b̃, Del)=f2 (0) (x̃, x̃Œ, q; b̃, Del) (4.32)

where

f2 (0) (x̃, x̃Œ, q; b̃, Del)

=f2B(|x̃− x̃Œ|, q)+Z(q; b̃, Del) h̃
+
HW(x̃+x̃Œ−2b̃; q) (4.33)

Z is a renormalization factor arising from the continuity conditions at
x=b when Del ] 0,

Z(q; b̃, Del) —
1−Dele−2qb̃[`1+q2+|q|]2

1−Dele−2qb̃[`1+q2−|q|]2
(4.34)

4.5. General Equivalent Integral Equations

According to Section 4.3 the determination of a screened potential f is
equivalent to solving the homogeneous equation (4.21). The asymptotic
equation at large distances associated with (4.21) has two exact linearly
independent solutions A± exp[+ x̃`1+q2] which either vanishes or
diverges when x̃ tends to+.. Thus, in the following h ±g

j will be looked for
under the form

h ±g
j (x̃; q, b̃)=e + x̃`1+q2[1+H ±g

j (x̃;`1+q2, b̃)] (4.35)
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h ±g
j is defined up to a multiplicative constant. For convenience sake, we

choose the particular solution such that h ±g
j (b̃; q, b̃)=exp(+ b̃`1+q2).

When Uj(x̃) vanishes at large distances at least as fast as 1/x̃, we show
in Appendix A that H+g

j (x̃) is the only solution of the integral equation

H+g
j (x̃)=−LUj

[1+H+g
j ; 2`1+q

2, b̃](x̃) (4.36)

where LUj
is a linear operator operating on a function f as

LUj
[f; c, b̃](x̃) — F

x̃

b̃
dv ecv F

+.

v
dt e−ctUj(t) f(t) (4.37)

As it is the case for Dyson equation, the solution H+g
j of (4.36), denoted by

HUj
in the following, can be written as the formal series

H+g
j =HUj

— −LUj
[1]+LUj

[LUj
[1]]−LUj

[LUj
[LUj

[1]]]+· · · (4.38)

For the sake of conciseness we have omitted the dependence upon the
parameters c=2`1+q2 and b̃ in (4.38).

We notice that, similarly, the function h−g
j which explodes exponen-

tially fast when x tends to +. and which is equal to exp[b̃`1+q2] at
x̃=b̃ corresponds to a H−g

j (u; q) which obeys the integral equation

H−g
j (u;`1+q

2, b̃)=F
u

b̃
dv e−2v`1+q2 F

v

b̃
dt e2t`1+q2 Uj(t)

×[1+H−g
j (t;`1+q

2, b̃)] (4.39)

A series similar to (4.38) can be written for H−g
j .

4.6. Structure of the e-Expansions of Screened Potentials

The structure of the e-expansions of f1 and f2 can be investigated by
means of the series representation (4.38) for the intermediate object HUj

combined with bounds upon Uj. First we consider U1(x̃) defined in (4.12),

U1(x̃)=C
a

u1a 5exp 1
Delea

2x̃
2−16 (4.40)
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with u1a — 4pbe
2
a za/o

2
1. As shown in Subsection B.1

|U1(x̃)| [
| Del |
2
1C
a

u1aea 2
1
x̃

if Del < 0 (4.41)

|U1(x̃)| [
Del

2
1C
a

u1aea exp 1
Delea

2b̃
22 1
x̃

if Del > 0 (4.42)

The result of the e-expansion for the solutions h ±g
1 of the homoge-

neous equation (4.21) proves to be very simple at first order in e, as shown
in Appendix B. The term of order e in the e-expansion of h ±g

1 coincides
with the corresponding term in the e-expansion of the solution of the
equation (4.7a) where U1 is replaced by its linearized value U lin

1

U lin
1 (x̃; e) — 1C

a

u1aea 2
Del

2x̃
(4.43)

(We stress that such a coincidence is no longer valid at higher orders in e.)
More precisely:

h+g
1 (x̃; q, b̃)=e−x̃`1+q2 51+F

x̃

b̃
dv e2v`1+q2 F

+.

v
dt e−2t`1+q2U lin

1 (t; e)6

+Oexp(e2) (4.44)

where e is a symbolic notation for the dependence on the ea’s. The double
integral involving U lin

1 (t; e) in (4.44) is proportional to e, while Oexp(e2) is
equal to e2—possibly multiplied by some power of ln e—times a function
f(x̃; e, b̃) which decays exponentially fast over the length-scale `1+q2

and which is bounded for all x > b by a function of b̃ and e/b̃. The func-
tion f(x̃; e, b̃) may contain powers x̃p(e) (with limeQ 0 p(e)=0) times an
exponential of −x̃`1+q2 , as it is the case for the exact solution of the
equation (4.21) where U1(x̃) is replaced by U lin

1 (x̃) (see (B24)).
We point out that the correction of order e in h+g

j (x̃; q, b̃) is a function
of x̃ only, whereas the higher-order corrections are functions which vary on
both scales 1 and e:

h+g
1 (x̃)=h(0)+1 (x̃)+eh (1)+1 (x̃)+e2h (2)+1

1 x̃, x̃
e
2+O(e3) (4.45)

This property ensures that the zeroth order term in the e-expansion of
the derivative “h+g

1 /“x̃ depends only on the corresponding term in the
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e-expansion of h+g
1 , whereas the first-order term involves the derivatives of

both the first and second corrections to h+g
1 ,

“h+g
1

“x̃
=
dh (0)+1 (x̃)
dx̃

+e 5 dh
(1)+
1 (x̃)
dx̃

+
“h (2)+1 (x̃, u)
“u
:
u=x̃/e

6+O(e2) (4.46)

According to (4.39), results similar to (4.44) and (4.45) also hold for
h−g
1 (x̃).

Finally, we turn to the e-expansion for the screened potential f1. f1 is
calculated from the h ±g

1 ’s by using the expression (4.26) valid for x > b
together with the continuity relations (4.5) involving the solutions (4.20) in
the region x < b. As a consequence of (4.46), at leading order in e, the
continuity relation (4.5) for the derivative “f1/“x̃ involves only the h (0)±1 ’s
and their derivatives dh (0)±1 /dx̃ . Therefore, the leading term f̃ (0)1 in the
e-expansion of f1 is entirely determined by the functions h (0)+1 and h (0)−1

(and not by functions which appear at higher orders in the e-expansions
of the hg±1 ’s) and it coincides with f2 (0) given in (4.33),

f1(r, rŒ)=o1f̃ (0) (o1r, o1rŒ; o1b, Del)+o1Oexp(e) (4.47)

where Oexp(e) has the same meaning as in (4.44). As a consequence of (4.47)

− 1
2 be

2
a[f1−fB](r, r)=eaF(x̃; e, b̃) (4.48)

where F(x̃; e, b̃) is a continuous function of x̃ in the interval b [ x̃ <.
which decays exponentially fast (with possible multiplicative powers xp(e))
over a typical length 1 when x̃ goes to +.. F(x̃; e, b̃) is integrable when x̃
goes to+. even when e vanishes, and may be bounded as follows,

|F(x̃; e, b̃)| [MF(e/b̃) g(x̃) -x̃ \ b̃ (4.49)

where g(x̃) is continuous and integrable in the interval [b̃,+.[.
From the previous result, we get the structure of U2(x̃) given in (4.13).

For x̃=o2x

U2(x̃)=C
a

u2a[e eaF(x̃(o1/o2); e, b̃)−1] (4.50)

with u2a — 4pbe
2
a za exp(ea)/o

2
2 . We show in Appendix B that, as it is the

case for U1, the first terms in the e-expansion of h+g
2 are given by (4.44)

where U lin
1 (x̃; e) is replaced by

U lin
2 (x̃; e, b̃)=C

a

u2aea F(x̃o1/o2; e, b̃) (4.51)
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The double integral involving U lin
2 (t; e, b̃) in (4.44) is not merely propor-

tional to e. According to definitions (4.8) and (4.9)

o2=o1[1+O(e)] (4.52)

and the properties of the double integral at stake imply that the first two
terms in the e-expansion of h+g

2 are given by (4.44) where U lin
2 is replaced by

1C
a

u2aea 2 F(x̃; e=0, b̃) (4.53)

Subsequently, all properties derived from (4.44) also hold for h+g
2 .

Eventually, the main result of the previous perturbative analysis is
that, at leading order in e, f1 and f2 coincide with the same function f (0)

apart from a scaling dependence upon either o1 or o2

fj(x, xŒ, ojq; e, ojb, Del)=
1
oj
f̃ (0) (ojx, ojxŒ, q; ojb, Del)+

1
oj

Oexp(e) (4.54)

In (4.54) Oexp(e) denotes a function of the variable x which satisfies two
properties. First it decays exponentially fast over the scale oj in the sense
that it falls off as exp(−ojx`1+q2) times a function which may increase
as xp(e) with limeQ 0 p(e)=0. Second, Oexp(e) remains bounded by e—
possibly multiplied by some power of ln e—times a function of e/(o1b)3
be2/b for all x > b, even if Oexp(e) may drastically vary over the scale
eoj ’ be2 ° oj.

As shown in next section, because of the neutrality constraint (2.13),
the explicit value of the correction of order e in f2 happens not to appear in
the first correction to the density profile. (Only some properties of it must
be known in order to settle that it really does not contribute to the density
profile at order e). The latter result may be viewed as a consequence of the
following property, already used in ref. 4. According to the first equation
of the BGY hierarchy, the first-order correction induced by Coulomb
interactions in the density profile is determined only by the potential drop
F(x) and the Ursell function at leading order; besides the latter one is
nothing but the screened potential f2 in the limit e=0. We recall that
limeQ 0 f2 is drastically different from the bare long-ranged Coulomb
potential vw, which would be a too crude approximation for the Ursell
function: though limeQ 0f2 has the same amplitude be2 as vw, it is a short-
ranged function with a characteristic scale o3 e/(be2).
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5. SCALING ANALYSIS IN THE WEAK-COUPLING LIMIT

In the weak-coupling regime of interest, the particle density ra(x) at
leading order in e is equal to its value r id

a (x) in an ideal gas submitted to
the external potential corresponding to the self-energy −Dele

2
a/4x of a

charge in the presence of a wall with an electrostatic response,

r id
a (x)=za exp(Delbe

2
a/4x) (5.1)

According to (1.8) and (4.8), the small dimensionless coupling parameter
inside the Coulomb fluid may be chosen as

ea —
1
2 o1be

2
a ° 1 (5.2)

while the coupling constant with the dielectric wall

Delbe
2
a

4b
(5.3)

can take any finite given value.

5.1. Screened Fugacities

In the weak-coupling regime, a simple scaling analysis may be per-
formed in the bulk as in the inhomogeneous situation near the wall. As a
consequence of (4.54) (1/2) be2a(f1−vB)(r, r) scales as ea at leading order
and takes the generic form

− 1
2 be

2
a(f1−vB)(r; r)=ea{1−L(o1(x−b); o1b, Del)}+Oexp(e2) (5.4)

where the term of leading order is entirely determined by o1f̃ (0) (o1r,
o1r; o1b, Del),

L(x̃− b̃; b̃, Del)=F
d2q
(2p)2

[f2 (0) (x̃, x̃, q; b̃, Del)−f2B(x̃, x̃, q)] (5.5)

L(x̃− b̃; b̃, Del) has been studied in Section 3.2 of Paper I. It can be
decomposed into

L(x̃− b̃; b̃, Del)=−Del
e−2x̃

2x̃
+L̄(x̃; b̃, Del) (5.6)
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where L̄(x̃− b̃; b̃, Del) remains finite even when x̃=b̃=0. Thus, according
to (3.5), (5.4) and (5.6), z̄[1]a proves to read

z̄[1]a (x)=zae ea h(x−b) exp 5Del
be2a
4x
e−2o1x6

×{1− eaL̄(o1x; o1b, Del)+Oexp(e2)} (5.7)

The expression (3.7) of z̄[2]a differs from the expression (3.5) of z̄[1]a
only by the replacement of f1 by f2. At leading order in e, apart from the
change of o1 into o2, f2 coincides with f1 (see (4.54)). Thus z̄[2]a is given by
(5.7) where o1 is replaced by o2 and ea is multiplied by o2/o1. However,
according to (4.9),

o2

o1
ea=ea[1+O(e)] (5.8)

so that

z̄[2]a (x)=h(x−b) za exp 5Del
be2a
4x
e−2o2 x6

×{1+ea[1−L̄(o2x; o2b, Del)]+Oexp(e2)} (5.9)

We remind the reader that Oexp(e2) denotes a function which tends expo-
nentially fast to a constant of order e2—possibly multiplied by some power
of ln e—when x goes to+..

5.2. Diagrams Contributing at Leading Order in e

First, we notice that even in the case where L is not bounded at the
origin—as it is the case when Ew > 1—an e-expansion can be performed for
integrals of the form > drŒ z̄[2]c (xŒ) f(r, rŒ). For that purpose, we introduce

w0(x̃; ea, Del) — exp 5Del
ea

2x̃
e−2x̃6−1 (5.10)

and we use the following formulas. Let us consider a dimensionless func-
tion f of the variable x which involves two length scales l1 and l2. f may
be written as f(x/l2; l1/l2). We set e — l1/l2. When b > l2, for all x > b x/l2
remains finite when e vanishes and

Exp
eQ 0

5F+.

b
dx f(x/l2; e)6=l2 F

+.

b/l2
dx̃2 Exp

eQ 0
[f(x̃2; e)] (5.11)
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When b° l2, we use the identity

Exp
l1 ° l2

F
.

b
dx · · ·= Exp

l1 ° l° l2

5F l

b
dx · · ·+F

.

l
dx · · · 6 (5.12)

When l/l2 vanishes, x/l2 goes to zero for all x < l but remains finite for
any x > l. Thus a basic formula for e-expansions when b° l2 reads

Exp
eQ 0

5F+.

b
dx f(x/l2; e)6= Exp

l/l1 Q+.
Exp
l/l2 Q 0

3 l1 F
l/l1

b/l1
dx̃1 Exp

eQ 0
[f(ex̃1; e)]

+l2 F
+.

l/l2
dx̃2 Exp

eQ 0
[f(x̃2; e)]4 (5.13)

We notice that only the sum of the two integrals in (5.13) is independent
from l, whereas the first (second) integral may diverge when l/l1 becomes
infinite (when l/l2 vanishes). Whatever the value of b may be, (5.11) and
(5.13) imply that oD > drŒ w0(xŒ; ea, Del) f(r, rŒ) is at least of order e ln e (see
also Subsection 3.3 of Paper I).

The simplest diagrams contributing to ra(x) are written in (3.11). The
potential involved in Fcc is f2. First, the scaling property of f2 at leading
order in e, namely

f (0)2 (r, rŒ; o2)=o2f2
(0) (o2r, o2rŒ), (5.14)

implies that, according to (3.8), (4.9), (5.2) and (5.9),

F drŒ z̄[2]c (xŒ) Fcc (r; rŒ)=O(e0) (5.15)

Moreover, this leading correction depends on the species only through a
coefficient zc. Subsequently, according to the neutrality constraint (2.13),
after summation over species, the diagram with one bond Fcc contributes
only at next order in e,

C
c

F drŒ z̄[2]c (xŒ) Fcc (r; rŒ)=O(e) (5.16)

In the same way, the scaling argument shows that

F drŒ z̄[2]a (xŒ)[Fcc (r; rŒ)]2=O(e) (5.17)
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An e-expansion can be performed for the contribution from [Fcc]2 to the
density representation (3.11). Since L̄(ojx) decays exponentially fast, com-
parison of (5.7) and (5.9) implies with (5.8) that

z̄[2]a (x)=z̄[1]a (x)× exp 5Del
be2a
2x
(e−2o2 x−e−2o1 x)6+O(zae2) (5.18)

and a straightforward calculation leads to the result

F drŒ [z̄[2]a (xŒ)− z̄[1]a (xŒ)][Fcc (r; rŒ)]2=O(e2) (5.19)

The basic formulas (5.11) and (5.13) with l1=beaec and l2=o
−1
2 allow

one to show that

F drŒ z̄[2]a (xŒ) FRT(r; rŒ)=O(e2) (5.20)

Indeed, according to (3.10) and (5.14), the scaling change r=r̃/o2 shows
that

F̃RT(r̃; r̃Œ; eac)=h(||r̃− r̃Œ||−o2s) e−eac f̃2(r̃; r̃Œ)−1

+eacf̃2(r̃; r̃Œ)−
1
2 e

2
ac(f̃2(r̃; r̃Œ))

2 (5.21)

with eac — o2beaec. Since z̄[2]a scales as za=r
id
aB 3 1/a3 (where r id

aB is the
bulk density of an ideal gas with the same fugacities) and

Exp
eQ 0

F̃RT(r̃; r̃Œ; eac)=O(e3ac), (5.22)

> drŒ z̄[2]a (xŒ) FRT(r; rŒ) is of order o−3
2 a

−3e3ac=O(e2ac). (See definitions (1.6)
and (1.8).) We notice that the same result is obtained by using the scaling
change r=beaecu and the property that limeQ 0 FRT(eu, euŒ; eac) is an inte-
grable function of u independent from e so that (5.13) implies that
> drŒ z̄[2]a (xŒ) FRT(r; rŒ) is of order (beaeaŒ)3 a−3=O(C3)=O(e2). In fact, the
lengths b and s may also generate contributions of order e2 exp[Delbe

2
a/4b]

or e2 exp[be2a/s], where b and s are supposed to be finite.
A scaling analysis analogous to that performed in ref. 3 shows that

more complicated diagrams contribute at least at the order e2 in the expo-
nential of the diagrammatic representation (3.11). Eventually, in order to
calculate ra(x) up to order e, in (3.11) we only have to consider the con-
tribution from the diagram with one bond Fcc up to order e.
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5.3. e-Expansions of the Contribution from the F cc Diagram

In (3.11) the contribution from Fcc up to order e is derived from (3.8),
where f2 is replaced by its leading value f (0)2 , and (5.9). It is equal to the
first order term in the e-expansion of

−
bea
o2

2

F
+.

b̃
dx̃Œ C

c

zcec[1+w0(x̃Œ; ec, Del)]{1+ec[1−L̄(x̃Œ; b̃, Del)]+Oexp(e2)}

×{f2 (0) (x̃, x̃Œ, q=0; b̃)+f2 (1) (x̃, x̃Œ, q=0; b̃, Del)+Oexp(e2)} (5.23)

where b̃=o2b and w0(x̃; ea, Del) is defined in (5.10). According to the neu-
trality constraint (2.13) and since the function f2 does not depend on the
species c, while the integral of f(x̃) times w0(x̃; ea, Del) gives a contribution
of order larger than > dx̃ f(x̃), the contribution (5.23) involves only the
leading term in the potential f2; it is reduced to

−
bea
o2

2

F
+.

b̃
dx̃Œ C

c

zcec{w0(x̃Œ; ec, Del)+ec[1−L̄(x̃Œ; b̃, Del)]}

×f2 (0) (x̃, x̃Œ, q=0; b̃) (5.24)

where f2 (0) (x̃, x̃Œ, q=0; b̃)=2p [e−|x̃− x̃Œ|+e−(x̃+x̃Œ−2b̃)].
Equation (5.24) may be rewritten as

C
c

F drŒ z̄[2]c (xŒ) Fcc (r; rŒ)

=−
4pbea
o2

2

1 C
c

zcecec[1−Mc(o2x; ec, o2b, Del)]2+Oexp(e2) (5.25)

whereMc=M̄+[Mc−M̄] with

M̄(x̃; b̃, Del)=
1
2 F

+.

b̃
duŒ [e−|x̃−uŒ|+e−(x̃+uŒ−2b̃)] L̄(uŒ; b̃, Del) (5.26)

andMc−M̄ is the e-expansion at orders ln ec and (ec)0 of the integral

−
1
2
1
ec
F
+.

b̃
duŒ [e−|x̃−uŒ|+e−(x̃+uŒ−2b̃)] w0(uŒ; ec, Del) (5.27)
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5.4. Structure of the e-Expansion for the Density Profile

The structure of the e-expansion for the density profile can now be
investigated. According to (3.11) and the results of the previous section

ra(x)=z̄[2]a (x) 51+C
c

F drŒ z̄[2]c (xŒ) Fcc (r, rŒ; a, c)6 [1+Oexp(e2)] (5.28)

where z̄[2]a (x) is given by (5.9) and Fcc (r, rŒ; a, c) is replaced by −beaeco2
f2 (0) (o2r, o2rŒ). By using (5.25) we get

ra(x)=h(x−b) za exp 1Del
be2a
4x
e−2o2 x2 31+ea[1−L̄(o2x; o2b, Del)]

−
4pbea
o2

2

C
c

zcecec[1−Mc(o2x; ec, o2b, Del)]+Oexp(e2)4 (5.29)

By definition of the bulk density (2.11) and since L̄ and Mc vanish
when x goes to infinity

rB
a=za 31+ea−

(;c zcecec) 4pbea
o2

2

+O(e2)4 (5.30)

The latter expression does coincide with the classical limit of the particle
density in a quantum plasma where exchange effects are neglected (see
Eq. (5.28) in ref. 1). Moreover, according to (1.6) and (4.9), o2 is equal to
oD up to a correction of order e

o2=oD[1+O(e)] (5.31)

Using the property exp[−(1+e) u]=exp[−u]− eu exp[−u]+O(e2u),
comparison of (5.29) with (5.30) leads to

ra(x)=r
B
a h(x−b) exp 1Del

be2a
4x
e−2oD x2×31−1

2
boD 5e2aL̄(oDx; oDb, Del)

−ea
4pb
o2

D

C
c

rB
c e

3
cMc(oDx; ec, oDb, Del)6+Oexp(e2)4 (5.32)

where ec=(1/2) be2coD.
The term withMc in (5.32) is related to the electrostatic potential drop

F(x) created by the charge density profile. Indeed, when the relation
between F(x) and the corresponding electrostatic field is combined with
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Gauss theorem together with the symmetries of the problem, and after an
integration by parts, F(x) proves to read

F(x)=−4p F
+.

x
dxŒ (xŒ−x) C

a

eara(xŒ) (5.33)

(The value of F(x) when x goes to +. is chosen to be equal to zero).
When the structure (5.28) of ra(x) is inserted into (5.33), according to (5.9)
(5.11) and (5.13), the contribution to F(x) at leading order e only comes
from the following part in ra(x) (with x > b),

z̄[2]a (x)+za (−bea) G(x) (5.34)

where

G(x)=F drŒ C
c

ec z̄
[2]
c (xŒ) o2f2

(0) (o2r, o2rŒ) (5.35)

Since f2 (0) (x̃, x̃Œ, q) obeys equation (4.27a),

o2
2 G(x)=4p C

c

ec z̄
[2]
c (x)+

d2G(x)
dx2 (5.36)

when x > b. Moreover o2
2=4pb(;a zae2a)×[1+O(e)] so that

F(x)=5F+.

x
dxŒ(xŒ−x)

d2G(xŒ)
dxŒ2
6 [1+Oexp(e)] (5.37)

According to the decay property of f2 (0), G(x) tends to a constant exponen-
tially fast when x goes to +.. Thus, after integration by parts, (5.37)
leads to

F(x)=[G(x)− lim
xQ+.

G(x)][1+Oexp(e)] (5.38)

Since −beaG(x) coincides with the l.h.s. of (5.25) at leading order in e, the
explicit value of F(x) is given by

F(x)=−
2pb
oD

C
c

rc e
3
cMc(oDx; ec, oDb, Del)+Oexp(e2/be) (5.39)

The latter result ensures that the expression of the density profile derived in
Paper I from a mean-field approach is exact at leading order in eD.
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APPENDIX A

In this appendix we show that, when Uj(x̃) vanishes at large distances
at least as fast as 1/x̃, H+g

j (x̃) defined in (4.35) is the only solution of the
integral equation (4.36). H+g

j (x;`1+q
2, b̃) obeys the nonhomogeneous

differential equation

d2H+
j

dx̃2 −2`1+q
2 dH

+
j

dx̃
−Uj(x̃) H

+
j =Uj(x̃) (A1)

and satisfies the following boundary conditions

H+g
j (b̃;`1+q

2, b̃)=0 (A2)

and

lim
x̃Q+.

e−x̃`1+q2H+g
j (x̃;`1+q

2, b̃)=0 (A3)

By using the extra change of function Gj(x̃)=exp[−2x̃`1+q2]
×dH+

j /dx̃ the problem is reduced to a first-order differential equation
which relates dGi/dx̃ to H+

j . The formal integration of the latter equation
leads to the relation

H+
j (x̃;`1+q

2, b̃)=a0+a1e2x̃`1+q2−LUj
[1+H+

j ; 2`1+q
2, b̃] (A4)

where LUj
is the linear operator defined in (4.37).

When Uj tends to zero at least as fast as U0/x̃ when x̃ goes to infinity
(with U0 a constant), the boundary conditions (A2) and (A3) imply that the
integration constants a0 and a1 are in fact equal to zero in the case of H+g

j .
Indeed, the hypothesis about Uj means that there exists some x̃0 such that

-x̃ \ x̃0 |Uj(x̃)| [
U0

x̃
(A5)

On the other hand, according to (A3), for any given realM> 0 there exists
some x̃1 such that

-x̃ \ x̃1(M) e−x̃`1+q2 |1+H+g
j (x̃)| < M (A6)
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Since exp(cv) is an increasing function of v, (A5) and (A6) combined with
properties of integrals lead to the inequality

|LUj
[1+H+g

j ; 2`1+q
2, b̃](x̃)| [L|Uj |[1+H

+g
j ; 2`1+q

2, b̃](x̃2)

+MU0e x̃`1+q2L1/t[1;`1+q2, x̃2](x̃)
(A7)

with x̃2=sup(x̃0, x̃1). In (A7), the left term in the upper bound is inde-
pendent from x̃ while the right term can be calculated explicitly. An
integration by parts leads to the result

L1/t[1; c, b̃](x̃)=
1
c
[ln(cx̃)+B(cx̃; cb̃)] (A8)

where B(cx̃; cb̃) is a continuous function of x̃ which has a finite limit when
x̃ goes to +. and which tends to − ln b̃ when x̃ approaches the value b̃.
Indeed,

B(cx̃; cb̃) — −[ecx̃ Ei(−cx̃)−ecb̃ Ei(−cb̃)]− ln(cb̃) (A9)

where Ei(−u) denotes the Exponential–Integral function defined for u > 0
as Ei(−u) — − >+.u dt exp(−t)/t. As a consequence of (A7) and (A8), in the
large-x limit exp(−2x̃`1+q2)LUj

[1+H+
j ] vanishes as well as H+

j ×
exp[−2x̃`1+q2] (according to (A3)) so that a1 in (A4) proves to be zero.
Then the definition (4.37) together with the choice (A2) enforce that a0 is
also equal to zero.

APPENDIX B

In the present appendix we study the structure of the e-expansions of
the functions HU defined by the series representation (4.38).

B.1. Bounds for the HUj
’s

According to integration properties, the linear operator LU defined in
(4.37) has the following properties,

|LU[f]| [ L|U|[|f|] (B1)

|U| < UŒSL|U|[|f|] [LUŒ[|f|] (B2)

276 Aqua and Cornu



and

0 [ f [ gS 0 [L|U|[f] [L|U|[g] (B3)

Therefore, by a recurrence argument, the series representation (4.38) of HU

leads to the following result

if |U| [ UŒ then |HU | [H−UŒ (B4)

In the present appendix we will omit all irrelevant indices and coeffi-
cients and we consider only the prototype functions

U1(x̃; e)=eDel
e

2x̃−1 (B5)

and

U2(x̃; e; b̃)=eeF(x̃; e, b̃)−1 (B6)

where F(x̃; e, b̃) is a continuous function of x̃ in the interval b̃ [ x̃ < +.,
which is bounded for all x̃ > b̃ as follows,

|F(x̃; e, b̃)| [MF(e/b̃) g(x̃) (B7)

where g(x̃) is a continuous function integrable in the interval [b̃,+.[.
Subsequently for all x̃ \ b̃

F(x̃; e, b̃) [MF(e/b̃) Mg(b̃) —M2(e/b̃, b̃) (B8)

whereMg(b̃) denotes the upper bound of g in the range b̃ [ x̃ < +..
Bounds upon the potentials Uj’s are derived by noticing that for all

reals v

3 |e
−|v|−1| [ |v|

0 [ e |v|−1 [ |v|e |v|
(B9)

((B9) is a direct consequence of the series representation of the exponen-
tial.) (B9) implies that

|U1(x̃; e)| < U
max
1 — e1

1
x̃

(B10)
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where e1=eM1(e/b̃, Del) and

M1(e/b̃, Del)=
Del

2
exp 1Del

2
e

b̃
2 if Del > 0 (B11a)

=
| Del |
2

if Del < 0 (B11b)

Besides, if the sign of F(x̃) depends on x̃, F(x̃) may be written as
F(x̃)=F+(x̃)−F−(x̃) with F+(x̃)=F(x̃) if F(x̃) > 0 and F+(x̃)=0 other-
wise, while F−(x̃)=−F(x̃) if F(x̃) < 0 and F−(x̃)=0 otherwise. With these
definitions |F(x̃)|=F+(x̃)+F−(x̃). Using the decomposition

e eF−1=(eeF+−1) e−eF−+(e−eF− −1) (B12)

together with (B7) and (B9), we get

|U2(x̃; e, b)| [ U
max
2 — e2 g(x̃) (B13)

where e2=eM2(e/b̃, b̃) and

M2(e/b̃, b̃)=MF(e/b̃) exp[eMF(e/b̃) Mg(b̃)] (B14)

The bounds (B10) and (B13) about the Ūj’s ensure that, according to (B4)

|HU1
| [H−e1/t and |HU2

| [H−e2 g (B15)

As shown in the following, some information about the structure of the
e-expansions of the HUj

’s can be derived from (B15). In particular in both
cases, the linearity of integrals ensures that the nth term in the series (4.38)
for H−Umax

j
is exactly of order enj , which is not the case when U(x̃, e) is not a

linear function of e.

B.2. e-Expansions of Bounds for the HU j
’s

First we consider H−eg. A mere integration by parts allows one to
show that when g(t) is positive, integrable at large t and continuous for
b̃ [ t < +.,

Lg[1](x̃) [ F
+.

b̃
dt g(t) — G(b̃) (B16)

Since L−eg[1]=−eLg[1], a recurrence argument proves that the nth term
in the series representation (4.38) of H−eg is a positive function of x which is

278 Aqua and Cornu



lower than [eG(b̃)]n. Thus, H−eg(x̃) is lower than a geometric series which
can be resummed with the result

H−eg(x̃) [
eG(b̃)
1− eG(b̃)

(B17)

Therefore H−eg(x̃; e, b̃) can be written as an e-expansion whose coefficients
are bounded functions of x̃,

H−eg(x̃)=C
+.

n=1
enGn(x̃; b̃) (B18)

with Gn(x̃; b̃) [ Gn(b̃) for all x̃ \ b̃.
When U(x̃)=e/x̃ the starting equation (A1) satisfied by HU, is exactly

solvable and the formal series (4.38) must coincide with the e-expansion of
the explicit exact solution. More precisely, exp(−x)[1+He/t(x)] is a solu-
tion of the stationary radial Schroedinger equation for a quantum state
with zero angular kinetic momentum and a negative energy −1, in the
Coulomb potential − e/r in dimensionless units, and with boundary con-
ditions (A2) and (A3). ((A2) is different from the corresponding condition
in a Hydrogen atom.) The equation reads

d2h
dx̃2+5

e

x̃
−16 h=0 (B19)

The solutions of (B19) are well-known: with the boundary conditions (A2)
and (A3)

1+He/t(x̃)=A(e, b̃) e x̃− b̃We/2, 1/2(2x̃) (B20)

where A(e, b̃)=[We/2, 1/2(2b̃)]−1 and W is the Whittaker function. Up to a
normalization factor

We/2, 1/2(2x̃)3 (2x̃) e/2 e−x̃ F
+.

0
dt e−tt−e/2 51+ t

2x̃
6 e/2 (B21)

The structure of the e-expansion of He/t can be derived either from the
e-expansion of the above integral representation of We/2, 1/2(2x̃) or from the
series representation (4.38). ((4.38) is also an e-expansion of He/t, since the
nth term is exactly of order en because of the linearity property of integra-
tion.) We choose to exhibit the second derivation in order to illustrate how
the series representation provides information. A recurrence scheme using an
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integration by parts and the fact that L1/t[f(ct); c, b̃](x̃)=(1/c)L1/t[f(t);
1, cb̃](cx̃) allows one to show a generalization of (A8) (with c=2),

L1/t[(ln 2t)p; 2, b̃](x̃)=
1

2(p+1)
(ln 2x̃)p+1+C

p

n=1
Ap, n(ln 2x̃)n+Bp(x̃, b̃)

(B22)

where Bp(x̃, b̃) is a bounded function of x̃ when x̃ > b̃. Since the nth term
in the series (4.38) for U=e/t is exactly proportional to en, a recurrence
scheme readily shows that the structure of the e-expansion of He/t(x̃) reads

He/t(x̃)=C
+.

n=1
en 5 1

n!
1 ln 2x̃
2
2n+bn−1(ln 2x̃)n−1+·· ·+b1 ln(2x̃)+B

g
n (x̃, b̃)6

(B23)

In (B23) Bg
n (x̃, b̃) is a function which is bounded for x̃ > b̃. The coefficient

at every order en vanishes when x̃=b̃ (because L1/t[f](x̃=b̃)=0). It
diverges as (1/n!)(ln(2x̃)/2)n at large x̃ and the summation over the
leading asymptotic behaviours at all orders in e can be performed explicitly
with the result

He/t(x̃) ’
x̃Q+.

e
e

2 ln(2x̃)=(2x̃) e/2 (B24)

The asymptotic behaviour (B24) indeed coincides with the leading large-
distance behaviour of the explicit solution (B20) derived by using the
integral representation (B21),

We/2 , 1/2(2x̃) ’
x̃Q+.

(2x̃) e/2 e−x̃ 51− e(2+e)
8x̃

+O 1 1
x̃2
26 (B25)

B.3. Exact Solution at First Order in e

First, the fact that the upper bounds Umax
j (x̃; ej, b̃)’s upon the Uj’s are

of the form

Umax
j (x̃; ej, b̃)=ejV

max
j (x̃) (B26)

(where e1 and e2 are defined in (B10) and (B13)) allows one to show that

HUj
=−LUj

[1]+C
+.

n=2
enaj, n(x̃; e, b̃) (B27)
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with for all x̃ \ b̃,

|aj, n(x̃; e, b̃)| [ [Mj(e/b̃, b̃ j−1)]n Aj, n(x̃, b̃) (B28)

where theMj’s are defined in (B11) and (B14). In (B28) A1, n(x̃; b̃) does not
diverge faster than (ln x̃)n when x̃ goes to infinity, while A2, n(x̃; b̃) is a
bounded function of x̃ for all x̃ \ b̃. The demonstration is the following.
According to the series representation (4.38) for HUj

, the inequalities (B1)
and (B2) together with the proportionality relation (B26) lead to

|HUj
+LUj

[1]| [ C
+.

n=2
enjLVmax

j
[LVmax

j
· · · [LVmax

j
[1]] · · · ] (B29)

where the coefficient of enj contains n operators LVmax
j

. (B29) implies that
the sum in (B27) indeed starts at the order e2. Moreover, according to
(4.38), the right term in (B29) may be written as

[H−Umax
j
+L−Umax

j
[1]] (B30)

The explicit structures of the ej-expansions (B18) and (B23) for the H−Umax
j

’s
together with the results (A8) and (B16) for L−Umax

j
imply that

|HUj
+LUj

[1]| [ C
+.

n=2
enj Aj, n(x̃; b̃) (B31)

where the Aj, n have the properties given after (B28).
Second, we show that the e-expansion of LUj

[1]−LU lin
j
[1] starts at

order e2, where the linearized potential U lin
j is the first-order term in the

expansion of the exponential involved in the definitions (B5) and (B6) of
the Uj’s. More precisely

LUj
[1]=LU lin

j
[1]+e2RLj

(x̃; e, b̃) (B32)

where for all x̃ \ b̃, RLj
is a bounded function of x̃ and the dependence of

its boundMLj
(e/b̃, b̃) upon e is entirely contained inM1(e/b) if j=1 or in

[MF(e/b̃)]2 exp[eMF(e/b̃) Mg(b̃)] if j=2. (B32) is derived as follows.
First we notice that

LUj
[1]−LU lin

j
[1]=LUj −U lin

j
[1] (B33)
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Moreover for all reals v

3 |e
−|v|−1+|v|| [ v2

e |v|−1−|v| [ v2e |v|
(B34)

so that

|U1(x̃; e)−U
lin
1 (x̃; e)| [

| Del |
2
M1(e/b̃) e2

1
x2 (B35)

A decomposition similar to (B12) reads

e eF−1− eF=(e eF+−1− eF+) e−eF−+eF+(e−eF− −1)

+(e−eF− −1+eF−)
(B36)

and we get

|U2(x̃; e)−U
lin
2 (x̃; e)| [MF(e/b̃) M2(e/b̃, b̃) e2g2 (x̃) (B37)

According to (B2), the latter bounds together with (B33) imply that

|LUj
[1]−LU lin

j
[1]| [ e2Lgj[1] (B38)

where g1(x̃)=(| Del |/2) M1(e/b̃) 1/x2 and g2(x̃)=MF(e/b̃) M2(e/b̃, b̃)
g(x̃)2. Since 1/x̃2 as well as g(x̃)2 are continuous for x̃ \ b̃ and integrable
when x̃ goes to ., the result (B16) can be applied to the gj’s and leads to
(B32).

Subsequently, according to (B27) and (B32)

HUj
(x̃)=−LU lin

j
[1](x̃)+e2RUj

(x̃; e, b̃) (B39)

where if e/b̃ and b̃ are kept bounded, limeQ 0 RUj
(x̃, e, b̃) < +. and

RUj
(x̃, e, b̃) does not diverge faster than x̃p(e) with limeQ 0 p(e) =0 when x̃

goes to +.. We recall that the result (B39) holds for a potential Uj(x̃; e)
which may be not bounded for all x̃ \ 0. The only hypotheses about
Uj(x̃; e) are that Uj(x̃; e) tends to zero at least as fast as e/x̃ when x̃
becomes larger than 1. The property (B39) can be applied to U lin

j and we
get

HUj
(x̃)−HU lin

j
(x̃)=e2[RUj

(x̃; e, b̃)−RU lin
j
(x̃; e, b̃)] (B40)

The solutions of the homogeneous equations (A1) for Uj and U
lin
j respec-

tively coincide only at the first order in their e-expansions.
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